

Marine Energy Research Innovation and Knowledge Accelerator

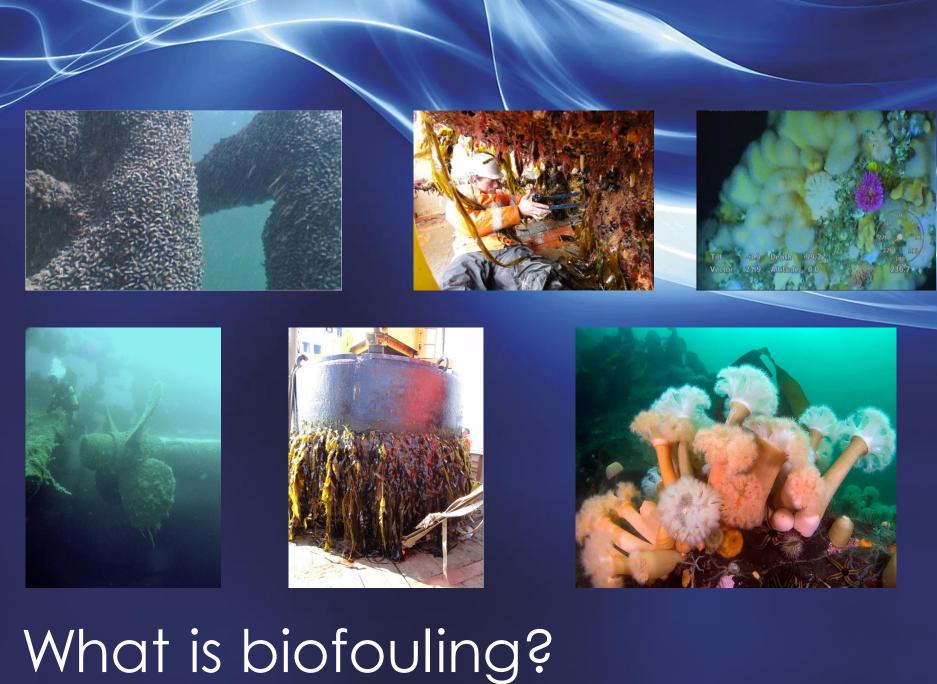
twitter

@jenloxton

merikafp7@uhi.ac.uk

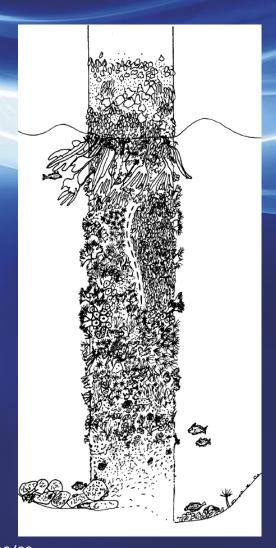
Jen Loxton, Ines Machado, Raeanne Miller & Chris Nall.

Marine Energy Research Innovatio and Knowledge Accelerator


Talk contents

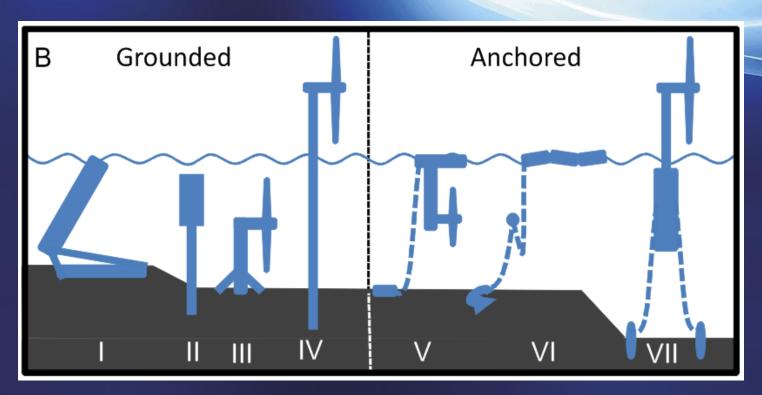
- Introduction to biofouling
- The good artificial reef effects
- The bad commercial and environmental implications
- The ugly non-native invasive species
- Stakeholder consultation and highest priority issues
- First results from MRE deployments.
- Next steps

merikafp7.eu merikafp7@uhi.ac.uk


Types of biofouling communities

Intertidal – barnacles, algae

Kelp Zone – kelps, barnacles, foliose algae


Main column – mussels, anemones, soft corals, hydroids, tubeworms, barnacles

Base – varies depending on scour protection and seabed mobility

Structural influences

- Free moving or static?
- Floating or fixed?
- Splash zone or intertidal zone?

- Biofouling happens in all industries
- Particularly relevant in this one devices are highly tuned to extract optimum energy

The Good- artificial reef effects

Aim of many MRE companies

- no anti-fouling coatings.
- High biodiversity
- Increases productivity
- Fish aggregation
- Ecosystem services E.g.
 - Filtration
 - Carbon deposition
 - Primary production

The Bad-commercial & environmental implications

Commercial

- Weight
- Density
- Thickness
- Roughness
- Heat transfer coefficients

The Bad-commercial & environmental implications

Commercial

- Decreased efficiency of energy extraction
- Decreased longevity of materials (corrosion)
- Increased maintenance costs

The Bad-commercial & environmental implications

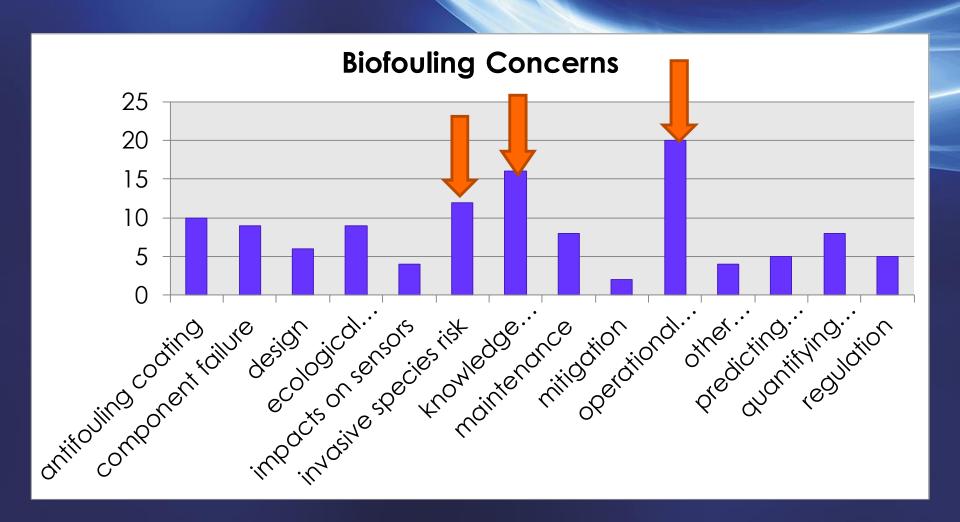
Environmental

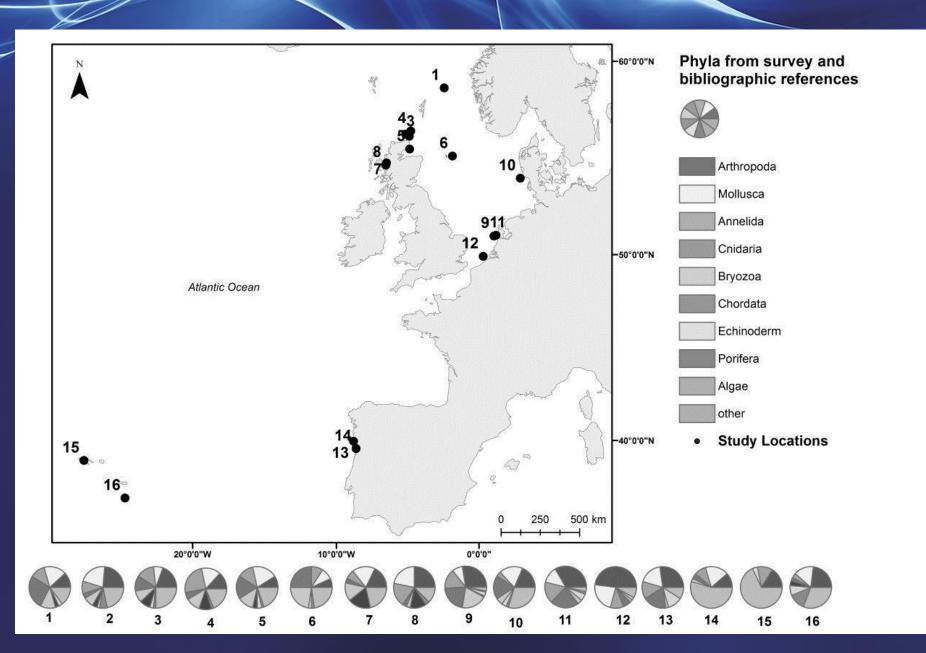
- Fish aggregation may increase risk of predator collision
- May change local benthic community structure
- Risk of non-native invasive species settlement and spread

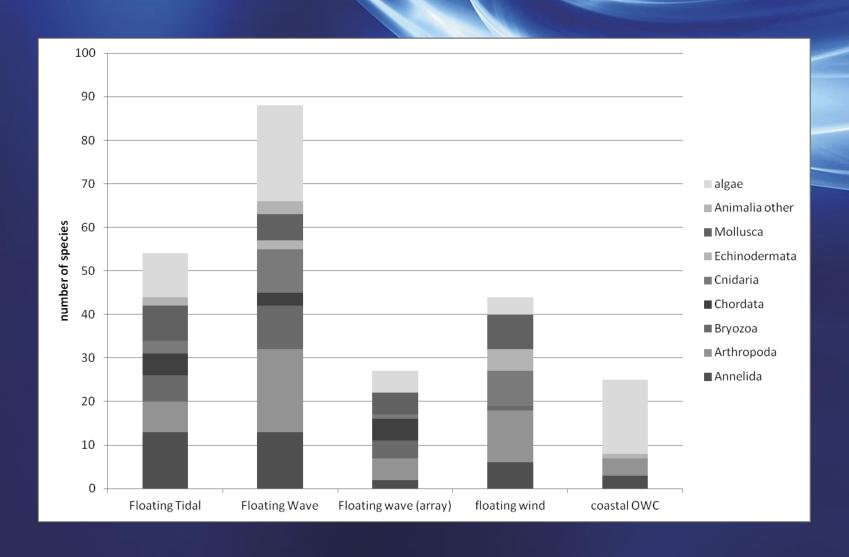
The Ugly-non-native invasive species (NNIS)

- Can be a licensing consideration
- Risk of "polluter pays" legislation
- Many NNIS are biofoulers
- Arrays may act as stepping stones into "uncontaminated" areas
- Multiple potential vectors:
 - Wet-towing devices
 - Servicing vessels
 - MRE harbours
 - Nearby industries e.g. Fish farms

We asked the experts...




Identifying issues & drivers


First results from industry

Biofouling scrape samples were collected for 5 MRE devices and extracted from scientific literature for other marine structures.

	Site	Location	Туре	latitude	longitude	reference
1						
1	Heather A		Offshore fixed oil platform	61.36304		Picken (1986)
2	Orkney buoys	Orkney	Nearshore floating buoy	58.84953	-3.01148	A Macleod PhD (2013)
3	Floating Wave	Orkney				
4	Floating Tidal	Orkney				
5	Beatrice	N. Scotland	Offshore fixed oil platform	58.11667	-3.08333	Picken (1986)
6	Montrose Alpha oil	N.E Scotland	Offshore fixed oil platform	57.45065	1.388264	Forteath et al. (1982)
7	Floating wave array	W Scotland				
8	Skye buoys	W Scotland	Nearshore floating buoy	57.27505	-5.71501	A Macleod PhD (2013)
9	Princess Amalia wind	Netherlands	offshore fixed wind	52.59	4.22	Vanagt et al. (2013)
10	Horns Rev windfarm	Denmark	offshore fixed wind	55.50001	7.820015	Leonhard & Pederson (2006)
11	OWEZ	Netherlands	offshore fixed wind	52.606	4.419	Bouma Lengkeek (2012)
12	Thornton Bank wind (2009)	Belgium	offshore fixed wind	51.54548	2.92978	Kerckhof et al (2010)
13	Floating wind	N. Portugal				
14	Aguda sea wall	N. Portugal	Inshore fixed seawall	41.04815	-8.65674	Santos J (2008)
15	coastal OWC	Azores				
16	Azores	Azores	natural shoreline	36.97	-25.1	Botehlo + (2009)

High level biofouling data

Summary of preliminary results

- Biofouling of up to 60kg/m2 recorded
- Broadly speaking, location matters. (e.g. Scotland vs Portugal)
- Biofouling in the top ~3m of floating structures is different to biofouling on fixed structures and at greater depths.
- Invasive species were found on all but 1 renewable energy device BUT they have not necessarily been introduced on the device and may already have been widespread in the area.

Next steps:

- Ongoing experiments to get more refined biofouling data from MRE deployments
- Have a better steer on stakeholder needs
- Peer reviewed publications (Loxton et al. and Machado et al.) – watch this space!
- Biofouling prediction project
 - in development
 - Incorporating key issues and drivers

WANTED

Any potential collaborators who have or could facilitate access to MRE test devices or test sites.

Contact: <u>Jennifer.loxton@uhi.ac.uk</u> @jenloxton

Thanks

Co-authors

Chris Nall Ines Machado Raeanne Miller

All developers and test site owners who helped us sample their sites.

Thank you for listening